CalcVox - Journal 4

Ty Gillespie
March 11, 2024

Goals:

1.

7.
8.

Fix more bugs, primarily related to decimals crashing the calculator when
used in exponents and when missing trailing zeros.

Research how to integrate menu code into the main Arduino loop() func-
tion.

Work on Journal 4.
Fix a few remaining bugs in Evox, the expression evaluator.

Research CAS (Computer Algebra Systems), thanks to the suggestion of
an advisor.

Meet with advisor.
Work more on core calculator components.

Write a basic outline of a menu system.

My Research and What I Learned: Fizing bugs in Evox: Shortly after
writing the initial implementation of Evox, our expression evaluator, Grant
found a few bugs with it. A good portion of the last couple weeks for me has
been tracking them down and fixing them. The bugs were as follows: Decimals
without leading zeros don’t work: The first problem discovered was that trying
to evaluate something like 1 4+ .1 wouldn’t work. 1 + 0.1 would, however. I
sat down and tackled this, and ended up fixing another bug at the same time
(decimals in exponents always evaluated to 0). Here was the code:

#include ”evox.h”

int

get_precedence (char op) {
switch (op) {

case ' 7:

return 3;
case ’'x’:
case '/’:

}

return 2;

case '+7:
case '—':

return 1;
default:

return O0;

}

double apply_operation(double a, double b, char op) {

}

switch (op) {
case ' 7:

return
case ’'x:
return
case ’/’:
return
case '+':
return
case '—':
return
default:
return

}

std ::pow(a, b);

a

x b;

/ b;

double evox(const std::string& expression) {
std :: stack<double> numbers;
std :: stack<char> operators;

bool reading_number = false;

double current_number = 0;

double decimal_place = 10; // To handle decimal digits
int open_parentheses_count = 0;

for (char c

i

}

}

T

expression) {
if (isdigit (c)

Il c ’
7. 7) {
decimal_

else {

f (¢

) { /) Allow digits and decimal point

place = 0.1;

if (reading_number) {

} else {

}

eading_number =

current_number += (¢ — ’0’) * decimal_pl
decimal_place %= 0.1;
current_number = current_number * 10 + (

true;

} else {
if (reading_number) {
numbers. push (current_number);

current_number = 0;
decimal_place = 10; // Reset decimal place
reading_number = false;

}
if (c— (") {
operators.push(c);
open_parentheses_count++;
} else if (¢ = 7)) {
if (open_parentheses_count =— 0) {
throw std::runtime_error (”Mismatched - par
}

while (!operators.empty() && operators.top() !=
char op = operators.top ();
operators.pop();
double b = numbers.top ();
numbers . pop ();
double a = numbers. top ();
numbers . pop ();
numbers. push (apply_operation(a, b, op));

if (loperators.empty()) {
operators.pop();
open_parentheses_count ——;

} else {
throw std::runtime_error (”Mismatched - par
}
1 else {
while (!operators.empty() && get_precedence (oper

char op = operators.top ();
operators.pop();

double b = numbers.top ();

numbers . pop ();

double a = numbers. top ();

numbers . pop ();

numbers. push (apply_operation(a, b, op));

}

operators.push(c);

}

if (reading_number) {
numbers. push (current_number);
}

if (open_parentheses_count > 0) {
throw std::runtime_error (” Mismatched-parentheses:-Too-many-openi
}

while (!operators.empty()) {
char op = operators.top ();
operators.pop ();
double b = numbers.top ();
numbers . pop ();
double a = numbers.top ();
numbers . pop ();
numbers . push (apply_operation(a, b, op));

if (numbers.size() I= 1) {
throw std::runtime_error (”Invalid-expression”);
}

return numbers. top ();
}

The fix was pretty simple, I just had to do a bit of extra logic when parsing
decimals. It made the code bigger, but not bloated so, and fixed two problems
at once. Overall, pretty successful. Fixing mismatched parentheses: The next
big thing was that mismatched parentheses caused the test program (and as
a result the calculator hardware) to freeze. My solution to this looks like the
following:

#include ”evox.h”

int get_precedence (char op) {
switch (op) {

case 7 7:

return 3;
case ’'x’
case '/’

return 2;
case '+7:
case —’:

return 1;
default:

return 0;

}
}

double apply_operation(double a, double b, char op) {
switch (op) {
case ' 7:
return std::pow(a, b);

[

case *

return a * b;
case '/’:

return a / b;
case '+’:

return a + b;
case —’:

return a — b;
default:

return 0;
}

}

double evox(const std::string& expression) {
std :: stack<double> numbers;
std :: stack<char> operators;

bool reading_number = false;
double current_number = 0;
double decimal_place = 10; // To handle decimal digits
int open_parentheses_count = 0;
for (char c¢ : expression) {
if (isdigit(c) || ¢ = ".7) { // Allow digits and decimal point
if (¢ = ".7) {
decimal_place = 0.1;
} else {
if (reading_number) {
current_number += (¢ — '0’) * decimal_pl
decimal_place %= 0.1;
} else {
current_number = current_number x 10 4+ (
}
}
reading_number = true;

1 else {
if (reading_number) {
numbers. push (current_number);

current_number = 0;
decimal_place = 10; // Reset decimal place
reading_number = false;

}
if (c— () {
operators.push(c);
open_parentheses_count++;
} else if (¢ =)7) {
if (open_parentheses_count = 0) {
throw std::runtime_error (”Mismatched - par
}

while (!operators.empty() && operators.top() !=
char op = operators.top();
operators.pop();
double b = numbers. top ();
numbers . pop ();
double a = numbers.top ();
numbers . pop ();
numbers. push (apply_operation(a, b, op));

if (loperators.empty()) {
operators.pop();
open_parentheses_count —;

} else {
throw std::runtime_error (”Mismatched - par

} else {
while (!operators.empty() && get_precedence (oper
char op = operators.top();
operators.pop();
double b = numbers. top ();
numbers . pop ();
double a = numbers.top ();
numbers . pop ();
numbers. push (apply_operation(a, b, op));
¥

operators.push(c);

}

if (reading_number) {
numbers. push (current_number);

if (open_parentheses_count > 0) {
throw std::runtime_error (” Mismatched-parentheses:-Too-many-openi
}

while (!operators.empty()) {
char op = operators.top ();
operators.pop ();
double b = numbers.top ();
numbers. pop ();
double a = numbers.top ();
numbers . pop ();
numbers . push (apply_operation(a, b, op));
}
if (numbers.size() = 1) {
throw std::runtime_error(”Invalid-expression”);

}

return numbers.top ();

}

This adds a bit more syntactical and conditional logic, checking for mismatched
parentheses and throwing a C++ exception if they’re mismatched. This is quite
nice actually, it makes it so the user can do something like:

#include <iostream>
#include <string>
#include ”evox.h”

int main(int argc, char sxargv) {
if (arge = 1) {
try {

std::string expression = argv[1l];
double result = evox(expression);
std::cout << result << std::endl;

} catch (const std::exception& e) {
std::cerr << "Error:-” << e.what() << std::endl;
return 1;

}

else {
while (true) {

try {
std::string expression;
std :: cout << ”"Enter-expression-(or-press-Enter-t
std:: getline (std ::cin, expression);
if (expression.empty()) break;
std :: cout << evox(expression) << std::endl;
} catch (const std::exception& e) {
std::cerr << "Error:-” << e.what() << std::endl;
}
}

return 0;

}

The code I just showed is actually what I use to test the Evox library. CMake,
my C/C++ build tool of choice, does have a native test runner, and I decided
to take this opportunity to sit down and learn how the test runner worked, and
also to make my library as good as possible. My CMake configuration looks like
the following (calcvox/evox/CMakeLists.txt):

cmake_minimum_required (VERSION 3.15.0)

project (evox LANGUAGES CXX)

add_executable (tester tester.cpp evox.cpp)

enable_testing ()

add_test (NAME TestMismatchedParentheses COMMAND tester ”(2+43)x4)”)

add_test (NAME TestMismatchedParentheses2 COMMAND tester 7 ((243)x4")

add_test (NAME TestOrderOfOperations COMMAND tester ”2+43%4”)

add_test (NAME TestOrderOfOperations2 COMMAND tester 72%x3+4")

add_test (NAME TestDecimalWithoutTrailingZeros COMMAND tester ”0.5%27)

add_test (NAME TestDecimalExponents COMMAND tester ”270.57)
set_tests_properties(TestMismatchedParentheses PROPERTIES PASS REGULAR EXPRESSIO
set_tests_properties (TestMismatchedParentheses2 PROPERTIES PASS REGULAR_EXPRESSI(
set_tests_properties (TestOrderOfOperations PROPERTIES PASS REGULAR _EXPRESSION 71
set_tests_properties (TestOrderOfOperations2 PROPERTIES PASS_ REGULAR_EXPRESSION ”
set_tests_properties (TestDecimalWithoutTrailingZeros PROPERTIES PASS REGULAR_EXF
set_tests_properties(TestDecimalExponents PROPERTIES PASS REGULAR EXPRESSION 1.

A~~~

It’s not super complicated, I just needed to make my tester program take the
proper command line arguments, while retaining the existing functionality (i.e.
an interactive, shell-like calculator experience on Windows). Menus: Another
big thing I worked on over the past few weeks is menus. Menus are going to be
used everywhere in this calculator, for everything from changing angle measure-
ments to statistics, so they’re important to get right. So far, I've made pretty
good progress. The menus can (optionally) wrap, specify a custom click sound
(i.e., a sound when the user moves through the menu), set the starting position,
speak an intro message, choose if they’re horizontal, vertical, or both, bind cus-
tom callbacks, and many more features. It works fully when tested on Windows.
The current obstacle is that I can’t get it to run on the microcontroller. I need
to find a way to integrate it with the existing loop() function. My thought on
how to do this is to have a std: :vector<uint> keys_pressed; and just make
a bool key_pressed(uint key) function. That should make checking for key
presses globally way easier, thus making the menu able to work.
Accomplishments:

1. Wrote a basic expression evaluator in idiomatic C++, supporting all the
basic functions of a calculator, as well as PEMDAS.

2. Began working on a new method of speech output using a second micro-
controller.

3. Wrote some software for the new speech chip, primarily to make it com-
patible with the DoubleTalk protocol.

4. Completed and presented my mid-year presentation.

5. Built some components for the final calculator. Most notably, started on
a super extensible menu system.

6. Squashed bugs in the expression evaluator, as well as in the software as a
whole.

Progress on Timeline: Despite the setbacks I've faced in recent weeks,
especially as far as bugs in the expression evaluator go as well as trying to
integrate the menu code with the main loop() function, I still think I'm quite
on track to finish the project. I deliberately gave myself ample time during this
part, just because I knew I'd most likely hit some issues.

Sources:

e https://github.com/codeplea/tinyexpr

https:
https:
https:
https:
https:
https:
https:
https:

https:

//github.com/christian-vigh/eval

//github.com/Blake-Madden/tinyexpr-plusplus
//stackoverflow.com/questions/5115872/what-is-the-best-way-to-evaluate-mathematic
//codeplea.com/tinyexpr

//www.codespeedy.com/expression-evaluation-in-cpp/
//www.geeksforgeeks.org/expression-evaluation/
//www.cppstories.com/2021/evaluation-order-cppl7/
//stackoverflow.com/questions/35845566/operator-precedence-in-python-pemdas

//en.cppreference.com/w/cpp/container/stack

